

Technische Brochüre

Elektrisch betriebene Expansionsventile AKVA 10, 15 und 20

AKVA sind elektrisch betriebene Expansionsventile für Ammoniak-Kälteanlagen.

Normalerweise werden die AKVA-Ventile durch Regler des Danfoss ADAP-KOOL°-Programms angesteuert.

Die AKVA-Ventile werden wie folgt geliefert:

- Ventil
- Spule mit Klemmdose oder Kabel
- Ersatzteile in Form von Oberteil, Düse und Filter (nur bei Umbau oder Reparatur notwendig)

Die individuellen Ventilleistungen werden durch eine in der Typenbezeichnung enthaltenen Zahl angegeben. Die Zahl entspricht der Düsen-größe des betreffenden

Ein Ventil mit Düse 3 wird beispielsweise mit AKVA 10-3 gekennzeichnet.

Der Düseneinsatz ist austauschbar.

Vorteile

- Geignet für HCFC, HFC, R717 (Ammoniak) und R744 (CO₂)
- Das Ventil bedarf keiner Einstellung
- Breiter Regelbereich
- Austauchbare Düseneinsatz
- In einigen Systemen kann AKVA mit Vorteil als Expansions- und Magnetventil vervendet
- Breites Sortiment an Spulen für d.c. und a.c.

Zulassungen

DEMKO, Dänemark SETI, Finnland SEV, Schweiz

AKVA 20 sind gemäß dem in der Druckgeräterichtlinie festgelegten europäischen Standard zugelassen und somit CEgekennzeichnet.

மு_க UL Zulassung nach U.S. und Canada Standarden (besondere Bestell-Nr.)

1

Inhalt		Seite
	Vorteile	
	Zulassungen	
	Technische Daten	
	Nennleistung und Bestellung	4
	Bestellung	5
	Leistung	8
	Dimensionierung	
	Konstruktion	12
	Funktion	13
	Abmesungen und Gewichte	
	Emnfehlungen	1/

Technische Daten

<u>Die AKVA 10-Ventile</u> decken einen Leistungsbereich von 4 kW bis 100 kW (R 717) ab und sind in 8 Leistungsgrößen eingeteilt.

Die AKVA 10-Ventilgehäuse sind aus Edelstahl und haben Schweißanschlüsse.

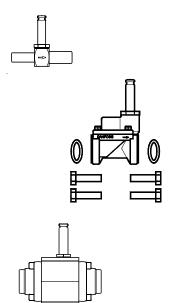
AKVA 15-Ventile haben Flansch-anschlüsse. Die AKVA 15-Ventiledecken einen Leistungssbereich von 125 kW bis 500 kW (R 717) und sind in 4 Leistungsgrößen eingeteilt.

<u>Die AKVA 20-Ventile</u> decken einen Leistungsbereich von 500 kW bis 3150 kW (R 717) und sind in 5 Leistungsgrößen eingeteilt.

Die AKVA 20-Ventile haben Schweißanschlüsse.

AKVA-Ventile eignen sich für:

- Überflutete Verdampfung (Hoch-/ Niederdruck)
- Pumpenseparatoren
- Direkte Expansion. Siehe Anlage.


Wenn das Ventil auf Kühlern angewandt werden soll, bitte mit Danfoss Kontakt aufnehmen.

AKVA ist geeignet für HCFC, HFC, R717 (Ammoniak) und R744 (CO₂).

Ventiltyp	AKVA 10	AKVA 15	AKVA 20
Zulässige Spannungsabweichung	+10 / -15%	+10 / -15%	+10 / -15%
Schutzart gem. IEC 529	Max. IP 67	Max. IP 67	Max. IP 67
Arbeitsprinzip (Pulsbreitenmodulation)	PBM	РВМ	PBM
Empfohlene Periodendauer	6 Sekunden	6 Sekunden	6 Sekunden
Leistungsbereich (R717)	4 bis 100 kW	125 bis 500 kW	500 bis 3150 kW
Regelbereich (Kapazitätsbereich)	10 - 100%	10 - 100%	10 - 100%
Anschluß	Schweiß	Schweiß	Schweiß
Medientemperatur	–50 bis 60°C	−40 bis 60°C	-40 bis 60°C
Umgebungstemperatur	−50 bis 50 °C	−40 bis 50 °C	−40 bis 50 °C
Undichtheit des Ventilsitzes	< 0.02% des k _v -Werts	< 0.02% des k _v -Werts	< 0.02% des k _v -Werts
MOPD	18 bar	22 bar	18 bar
Filter	Intern, 100 μm austauchbar	extern, 100 μm	extern, 100 μm
Max. Betriebsüberdruck	PS = 42 bar g	PS = 42 bar g	PS = 42 bar g
Prüfdruck	PT= 36 bar g	PT= 36 bar g	PT= 60 bar g

Nennleistung und Bestellung

Ventiltyp	Nennle	istung¹)	k _v -Werte	Anschluss Ein. x Aus.	Bestell-Nr.	Anschluss Ein. x Aus.	Bestell-Nr.
	kW	tons	m³/h	Zoll		Zoll	
AKVA 10-1	4	1.1	0.010	$^{3}/_{8} \times ^{1}/_{2}$	068F3261	$^{1}/_{2} \times ^{3}/_{4}$	068F3281
AKVA 10-2	6.3	1.8	0.015	$^{3}/_{8} \times ^{1}/_{2}$	068F3262	$^{1}/_{2} \times ^{3}/_{4}$	068F3282
AKVA 10-3	10	2.8	0.022	$^{3}/_{8} \times ^{1}/_{2}$	068F3263	$^{1}/_{2} \times ^{3}/_{4}$	068F3283
AKVA 10-4	16	4.5	0.038	$^{3}/_{8} \times ^{1}/_{2}$	068F3264	$^{1}/_{2} \times ^{3}/_{4}$	068F3284
AKVA 10-5	25	7.1	0.055	$^{3}/_{8} \times ^{1}/_{2}$	068F3265	$^{1}/_{2} \times ^{3}/_{4}$	068F3285
AKVA 10-6	40	11.4	0.103	$^{3}/_{8} \times ^{1}/_{2}$	068F3266	$^{1}/_{2} \times ^{3}/_{4}$	068F3286
AKVA 10-7	63	17.9	0.162			$^{1}/_{2} \times ^{3}/_{4}$	068F3267
AKVA 10-8	100	28.4	0.251			$^{1}/_{2} \times ^{3}/_{4}$	068F3268
AKVA 15-1	125	35	0.25	Flansch	068F5020 ²)		
AKVA 15-2	200	60	0.40	Flansch	068F5023 ²)		
AKVA 15-3	300	90	0.63	Flansch	068F5026 ²)		
AKVA 15-4	500	140	1.0	Flansch	068F5029 ²)		
AKVA 20-1	500	140	1.0	1 1/ ₄ × 1 1/ ₄	042H2101		
AKVA 20-2	800	240	1.6	1 1/ ₄ × 1 1/ ₄	042H2102		
AKVA 20-3	1250	350	2.5	1 1/ ₄ × 1 1/ ₄	042H2103		
AKVA 20-4	2000	600	4.0	1 ¹ / ₂ × 1 ¹ / ₂	042H2104		
AKVA 20-5	3150	900	6.3	2×2	042H2105		

- 1) Nennleistungen basieren auf Verflüssigungstemperatur $t_k=32^{\circ}C$ Flüssigkeitstemperatur $t_v=28^{\circ}C$ Verdampfungstemperatur $t_0=5^{\circ}C$ 2) Einschl. Schrauben und Dichtungen jedoch ohne Flansche

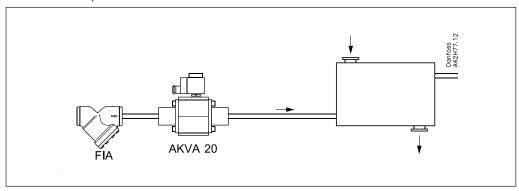
Flansche für AKVA 15

Ventil Typ	Anschluss (Zoll)	Bestell-Nr.
AKVA 15-1 bis 4	3/4	027N1220
	1	027N1225

Bestellung *Zubehör*

Filter

In Anlagen mit Ammoniak sowie ähnlichen Industrieanlagen ist vor AKVA 15 und AKVA 20 ein Filter zu installieren. AKVA 10 verfügt über ein eingebautes Filter, weshalb ein externes Filter nicht erforderlich ist.


Empfohlener Filter für AKVA 15/20

Filtertyp	Beste	Bestell-Nummer		
	Haus	Filtereinsatz 100 μm		
FIA 20 D STR	148H3086	148H3122		
FIA 25 D STR	148H3087			
FIA 32 D STR	148H3088	148H3123		
FIA 40 D STR	148H3089			
FIA 50 D STR	148H3090	148H3157		

Weitere Information: Siehe Katalog RD6CD

Kombinationsbeispiele

Bestellung *Ersatzteile*

AKVA 10

Bestell-Nr.	Inhalt
068F0526	
068F0527	
068F0528	
068F0529	1 Stück Düse
068F0530	1 Stück Al-Dichtung 1 Stück Hutmutter
068F0531	
068F0532	
068F0533	
	068F0526 068F0527 068F0528 068F0529 068F0530 068F0531 068F0532

Filter	Bestell-Nr.	Inhalt
	068F0540	10 Stück Filter 10 Stück Al-Dichtungen

Oberteil

	068F5045	1 Stück Anker 1 Stück Ankerrohr 1 Stück Al-Dichtungen
--	----------	---

AKVA 15

Kolben				
Тур	Bestell-Nr.	Inhalt		
AKVA 15-1	068F5265	1 Stück Kolbeneinheit		
AKVA 15-2	068F5266	1 Stück Dichtung		
AKVA 15-3	068F5267	1 Stück O-Ringe		
AKVA 15-4	068F5268	2 Stück Etiketten		

Dichtungsatz	068F5264	Kompletter Dichtungssatz

Düsensatz	Bestell-Nr.	Inhalt
ਰ ਹੈ	068F5261	Hauptdüse Pilotdüse Al-Dichtungen O-Ringe Dichtung

Oberteil

	068F5045	1 Stück Anker 1 Stück Ankerrohr 1 Stück Al-Dichtung
--	----------	---

Filter

AKVA 20

Kolben

Тур	Bestell-Nr.	Inhalt				
AKVA 20-0.6	042H2039					
AKVA 20-1	042H2040					
AKVA 20-2	042H2041	1 Stück Kolbeneinheit				
AKVA 20-3	042H2042	3 Stück O-Ringe				
AKVA 20-4	042H2043					
AKVA 20-5	042H2044					

Düsensatz

Dascrisatz		
Тур	Bestell-Nr.	Inhalt
AKVA 20-0.6	068F5270	Hauptdüse, Durchm. 8 mm
AKVA 20-1	068F5270	Pilotdüse, Durchm. 1.2 mm
AKVA 20-2	068F5270	2 Stück Al-Dichtungen
AKVA 20-3	068F5270	O-Ringe
AKVA 20-4	068F5271	Hauptdüse, Durchm. 14 mm
AKVA 20-5	068F5271	Pilotdüse, Durchm. 2.4 mm 2 Stück Al-Dichtungen O-Ringe

Dichtungssatz	042H0160	Kompletter dichtungsatz für neue und alte Ventil Ausführungen
---------------	----------	---

		·
Oberteil	Bestell-Nr.	Inhalt
	068F5045	1 Stück Anker 1 Stück Ankerrohr 1 Stück Al-Dichtung

Bestellung Spulen für AKVA-Ventile

AKVA	AKVA	AKVA	AKVA	AKVA	AKVA
10-1	10-6	10-7	15-1	20-1	20-4
10-2		10-8	15-2	20-2	20-5
10-3			15-3	20-3	
10-4			15-4		
10-5					

D.C. Spulen	Bestell-Nr.						
220 V d.c. 20 W, Standard mit Klemmdose	018F6851	+	+	+	+	+	+
100 V d.c. 18 W, Sonderausf. mit Klemmdose mit DIN-Steckzungen	018F6780	+	+	+	+	+	+
230 V d.c. 18 W, Sonderausf. mit Klemmdose mit DIN-Steckzungen	018F6781¹) 018F6991¹)	+	+	+	+	+	+
230 V d.c. 18 W, Sonderausf. mit 2.5 m Kabel mit 4.0 m Kabel mit 8.0 m Kabel	018F6288¹) 018F6278¹) 018F6279¹)	+	+	+	+	+	+

¹⁾ Empfohlen für gewerbliche Kälteanlagen

					1	1	
A.C. Spulen	Bestell-Nr.						
240 V a.c. 10 W, 50 Hz mit Klemmdose mit DIN-Steckzungen	018F6702 018F6177	+	+	_	+	_	_
240 V a.c. 10 W, 60 Hz mit Klemmdose mit DIN-Steckzungen	018F6713	+	+	_	+	_	_
240 V a.c. 12 W, 50 Hz mit Klemmdose	018F6802	+	+	+	+	+	_
220 V a.c. 10 W, 50 Hz mit Klemmdose mit DIN-Steckzungen	018F6701 018F6176	+	+	_	+	_	_
220 V a.c. 10 W, 60 Hz mit Klemmdose mit DIN-Steckzungen	018F6714 018F6189	+	+	_	+	_	_
220 V a.c. 12 W, 50 Hz mit Klemmdose	018F6801	+	+	_	+	+	_
220 V a.c. 12 W, 60 Hz mit Klemmdose	018F6814	+	+	_	+	+	_
115 V a.c. 10 W, 50 Hz mit Klemmdose mit DIN-Steckzungen	018F6711 018F6186	+	+	_	+	_	_
115 V a.c. 10 W, 60 Hz mit Klemmdose mit DIN-Steckzungen	018F6710 018F6185	+	+	_	+	_	_
110 V a.c. 12 W, 50 Hz mit Klemmdose	018F6811	+	+	_	+	+	_
110 V a.c. 12 W, 60 Hz mit Klemmdose	018F6813	+	+	_	+	+	_
24 V a.c. 10 W, 50 Hz mit Klemmdose mit DIN-Steckzungen	018F6707 018F6182	+	_	_	+	_	_
24 V a.c. 10 W, 60 Hz mit Klemmdose mit DIN-Steckzungen	018F6715	+	_	_	+	_	_
24 V a.c. 12 W, 50 Hz mit Klemmdose	018F6807	+	_	_	+	+	+
24 V a.c. 12 W, 60 Hz mit Klemmdose	018F6815	+	_	_	+	+	+
24 V a.c. 20 W, 50 Hz mit Klemmdose	018F6901	+	+	+	+	+	+
24 V a.c. 20 W, 60 Hz mit Klemmdose	018F6902	+	+	+	+	+	+

Leistung

Bereich: – 40 bis 10°C **R 717**

Ventiltyp		Leistung in kW bei einem Druckabfall über dem Ventil Δp bar										
	2	4	6	8	10	12	14	16				
AKVA 10 - 1	2.2	3.1	3.7	4.1	4.4	4.7	5.0	5.2				
AKVA 10 - 2	3.5	4.9	5.8	6.5	7.0	7.5	7.9	8.3				
AKVA 10 - 3	5.6	7.7	9.1	10.2	11.1	11.9	12.5	13.1				
AKVA 10 - 4	9.1	12.4	14.7	16.5	17.9	19.2	20.2	21.1				
AKVA 10 - 5	14.2	19.4	22.9	25.7	28.0	29.9	31.6	33.0				
AKVA 10 - 6	23.0	31.2	36.4	41.4	45.0	48.1	50.7	53.1				
AKVA 10 - 7	36.6	49.3	58.1	65.0	70.6	75.3	79.4	83.0				
AKVA 10 - 8	59.1	78.9	93.5	104	112	120	126	131				
AKVA 15 - 1		95.7	113	127	138	148	156	163				
AKVA 15 - 2		153	181	203	221	236	250	261				
AKVA 15 - 3		231	274	308	335	358	377	395				
AKVA 15 - 4		383	455	510	555	593	625	655				
AKVA 20 - 1		383	455	510	555	593	625	655				
AKVA 20 - 2		612	726	814	886	947	999	1045				
AKVA 20 - 3		959	1137	1275	1388	1482	1564	1635				
AKVA 20 - 4		1552	1836	2057	2239	2391	2523	2639				
AKVA 20 - 5		2479	2921	3267	3550	3789	3994	4174				

Korrektur für Unterkühlung

Die Verdampferleistung muss korrigiert werden, falls eine von 4K abweichende Unterkühlung vorliegt.

Der aktuelle Korrekturfaktor kann der Tabelle entnommen werden.

Um die korrekte Leistung zu ermitteln, ist die Verdampferleistung mit dem Korrekturfaktor zu multiplizieren.

Korrekturfaktoren für Unterkühlung Δt_u

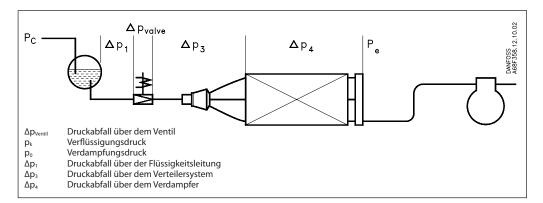
Korrekturfaktor	2K	4 K	10 K	15 K	20 K	25 K	30 K	35 K	40 K	45 K	50 K
R 717	1.01	1.00	0.98	0.96	0.94	0.92	0.91	0.89	0.87	0.86	0.85

 $Korrigier te\ Leistung = Verdampferleistung\ x\ Korrekturfaktor$

Dimensionierung

Um ein bei unterschiedlichen Lastbedingungen korrekt funktionierendes Expansionsventil zu erhalten, ist es notwendig, die folgenden Punkte bei der Dimensionierung des Ventils zu berücksichtigen: Bei der Behandlung ist folgende Reihenfolge zu beachten

- 1. Verdampferleistung
- 2. Druckabfall über dem Ventil
- 3. Korrektur für Unterkühlung
- 4. Korrektur für Verdampfungstemperatur
- 5. Bestimmung der Ventilgröße
- 6. Korrekte Dimensionierung der Flüssigkeitsleitung


Dimensionierung

1. Verdampferleistung

Die Verdampferleistung ist den Spezifikationen des Verdampferherstellers zu entnehmen.

2. Druckabfall über dem Ventil

Die Leistung wird direkt durch den Druckabfall über dem Ventil bestimmt und ist daher entsprechend zu berücksichtigen. Normalerweise läßt sich der Druckabfall über dem Ventil als Verflüssigungsdruck abzüglich Verdampfungsdruck und mehrerer anderer Druckverluste in der Flüssigkeitsleitung, im Verteiler, im Verdampfer etc. kalkulieren. Dies wird in folgender Formel ausgedrückt: $\Delta p_{Ventil} = p_k - (p_0 + \Delta p_1 + \Delta p_3 + \Delta p_4)$

Anmerkung!

Der Druckabfall über der Flüssigkeitsleitung und dem Verteilsystem ist auf Basis der max. Leistung des Ventils zu berechnen, da das Ventil nach dem Prinzip der Pulsbreitenmodulation arbeitet.

Beispiel zur Kalkulation des Druckabfalls über einem Ventil:

Kältemittel: R 717

Verflüssigungstemperatur: 35° C ($p_k = 13.5$ bar) Verdampfungstemperatur: -20° C ($p_0 = 1.9$ bar)

 $\Delta p_1 = 0.2 \text{ bar}$ $\Delta p_3 = 0.8 \text{ bar}$ $\Delta p_4 = 0.1 \text{ bar}$ Damit ergibt sich folgende Gleichung:

$$\begin{array}{ll} \Delta p_{Ventil} &= p_k - (p_0 + \Delta p_1 + \Delta p_3 + \Delta p_4) \\ &= 13.5 - (1.9 + 0.2 + 0.8 + 0.1) \\ &= 10.5 \ bar \end{array}$$

Das gefundene Ergebnis für den "Druckabfall über dem Ventil" wird später im Abschnitt "Bestimmung der Ventilgröße" benutzt.

3. Korrektur für Unterkühlung

Die Verdampferleistung muß korrigiert werden, falls eine von 4K abweichende Unterkühlung vorliegt. Der aktuelle Korrekturfaktor kann der Tabelle entnommen werden.

Um die korrekte Leistung zu ermitteln, ist die Verdampferleistung mit dem Korrekturfaktor zu multiplizieren.

Korrekturfaktoren für Unterkühlung Δt_u

Korrekturfaktor	2K	4 K	10 K	15 K	20 K	25 K	30 K	35 K	40 K	45 K	50 K
R 717	1.01	1.00	0.98	0.96	0.94	0.92	0.91	0.89	0.87	0.86	0.85

 $Korrigierte\ Leistung = Verdampferleistung\ x\ Korrekturfaktor$

Die korrigierte Leistung wird im Abschnitt "Bestimmung der Ventilgröße" benötigt.

Anmerkung:

Zu geringe Ünterkühlung kann zur Dampfblasenbildung in der Kältemittelflüssigkeit sleitung führen.

Beispiel für Korrektur: Kältemittel: R 717

Verdampferleistung Q₀: 300 kW

Unterkühlung: 10 K

Korrekturfaktor gem. Tabelle = 0.98 Korrigierte Leistung = 300 x 0.98 = 294 kW.

Dimensionierung

4. Korrektur für Verdampfungstemperatur (t_o)
Die Anwendung ist bei der Ermittlung eines korrekt dimensionierten Ventils zu berücksichtigen. Abhängig von der Anwendung sollte das Ventil etwas überdimensioniert sein, um in bestimmten Perioden zusätzliche Kälteleistung zur Verfügung zu haben, z.B. während der Rückgewinnung nach Abtauvorgängen. Der Öffnungsgrad des Ventils sollte daher

beim Regeln zwischen 50 und 75% liegen.
Damit wird sichergestellt, daß das Ventil
über einen ausreichend großen Regelbereich
verfügt und damit wechselnde Belastungen
am und in Nähe vom normalen Arbeitspunkt
handhaben kann. Der folgenden Tabelle
können die Korrekturfaktoren für die
Verdampfungstemperatur entnommen werden:

Korrekturfaktoren für Verdampfungstemperatur (t₀)

Verdampfungstemperatur t₀°C	5	0	- 10	-15	- 20	- 30	- 40
AKVA 10, AKVA 15, AKVA 20	1.0	1.0	1.0	1.0	1.2	1.3	1.4

5. Bestimmung der Ventilgröße
Wird die Ventilgröße für die benötigte
Leistung ausgewählt, gilt zu beachten, dass die
Leistungsangaben der Nennwert des Ventils sind,
d.h. bei 100% geöffnetem Ventil gelten.
In diesem Abschnitt behandeln wir, wie sich die
Ventilgröße bestimmen lässt.
Drei Faktoren spielen bei der Wahl des Ventils eine
Rolle:

- der Druckabfall über dem Ventil
- die korrigierte Leistung (Korrektur für Unterkühlung)
- die korrigierte Leistung für die Verdampfungstemperatur.

Die drei Faktoren wurden bereits früher in diesem der Dimensionierung betreffenden Abschnitt beschrieben. Nach Ermittlung der drei Faktoren kann die Auswahl durchgeführt werden:

- Zuerst ist die "korrigierte Leistung" mit einem der Tabelle zu entnehmenden Wert zu multiplizieren.
- Setzen Sie den neuen Wert in der Leistungstabelle gemeinsam mit dem Wert für den Druckabfall ein.
- Wählen Sie jetzt die Ventilgröße.

Beispiel zur Ventilauswahl

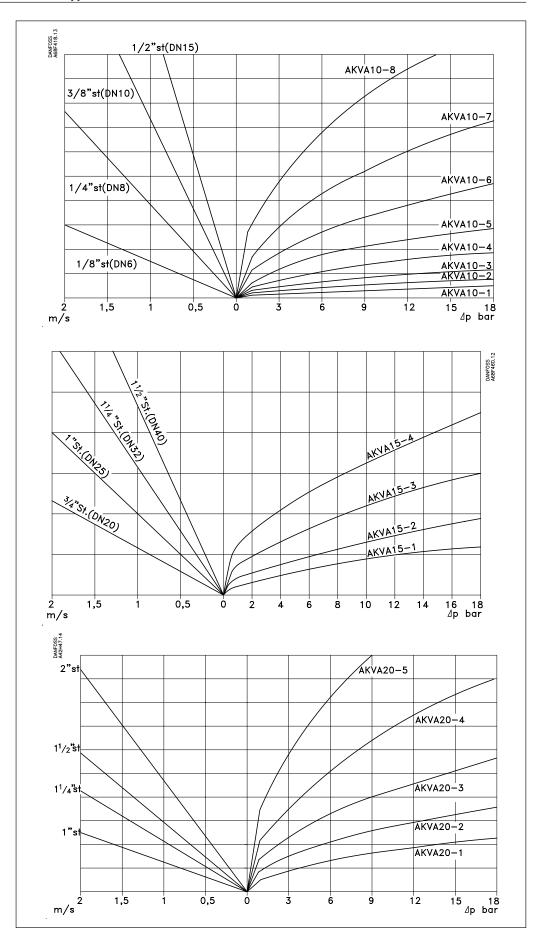
Als Ausgangspunkt dienen die beiden früher angeführten Beispiele, in denen die beiden folgenden Werte ermittelt wurden:

 $\Delta p_{Ventil} = 10,5 \text{ bar}$ $Q_{0 \text{ korrigiert}} = 294 \text{ kW}$

Das Ventil soll in einem Solekühler angewandt werden. Folglich ist 1,2 als "Korrekturfaktor für die Verdampfungstemperatur" zu wählen.

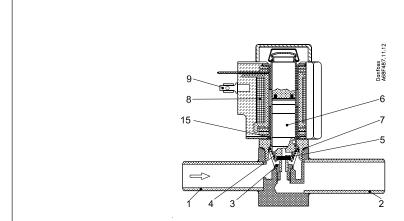
Die dimensionierte Kapazität beträgt dann: 1.2 x 294 kW = 353 kW. Wählen Sie jetzt die Ventilgröße aus einer der Leistungstabellen.

Mit den gegebenen Werten $\Delta p_{Ventil} = 10,5$ bar und einer Leistung von 353 kW ist eine Ventilgröße AKVA 15 - 4 mit 1 Zoll Schweißflansch zu wählen.

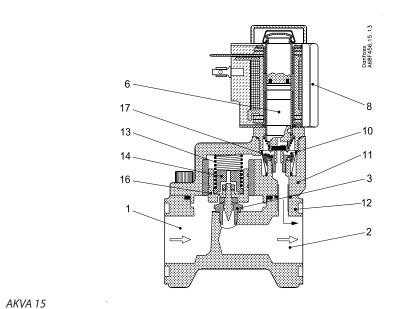

Dieses Ventil verfügt über eine Leistung von ungefähr 555 kW.

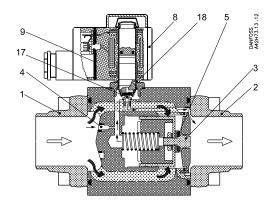
6. Korrekt dimensionierte Flüssigkeitsleitung Um eine korrekte Flüssigkeitsversorgung des AKVA-Ventils zu gewährleisten, ist eine korrekte Dimensionierung der Flüssigkeits-leitung zum jeweiligen AKVA-Ventil vorzunehmen.

Die Durchflussrate der Flüssigkeit darf 1 m pro Sekunde nicht überschreiten. Dies ist im Hinblick auf Druckabfall (fehlende Unter-kühlung) und Pulsation in der Flüssigkeits-leitung einzuhalten. Die Dimensionierung der Flüssigkeitsleitung bestimmt sich aus der Leistung des Ventils, die sich aus dem beim Betrieb entstehenden Druckabfall ergibt (vgl. Leistungstabelle), und nicht aus der Leistung des Verdampfers, siehe nächste Seite



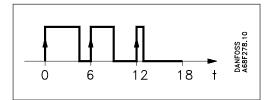
Dimensionierung




Konstruktion

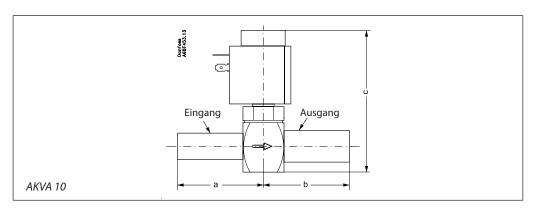
AKVA 10

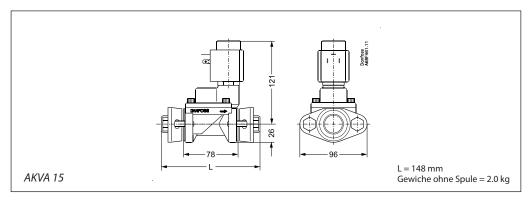
- 1. Eingang
- Ausgang Düse
- 4. Filter
- Ventilsitz
- Anker
- Aluminiumdichtung
- 8. Spule
- 9. DIN-Stecker
- 10. Filter
- 11. Gehäuse
- 12. Ventilgehäuse
- 13. Feder
- 14. Düseneinheit
- 15. O-Ring
- 16. Kolbeneinheit
- 17. Pilotdüse
- 18. Pilotventil

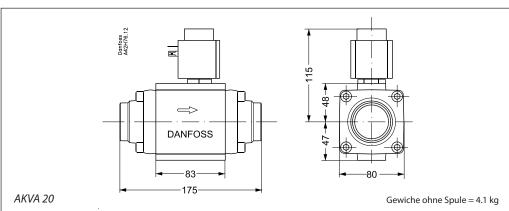


AKVA 20

Funktion


Die Ventilleistung wird mittels Pulsbreitenmodulation geregelt. Während einer Periode von 6 Sekunden gibt der Regler für eine bestimmte Zeit ein Spannungssignal an die Ventilspule. Dadurch wird das Ventil für den Durchfluss von Kältemittel geöffnet oder geschlossen.


Das Verhältnis von Öffnungszeit zu Schließzeit ist Ausdruck für die aktuelle Leistung. Besteht ein hoher Bedarf an Kälteleistung, wird das Ventil nahezu während der gesamten Dauer von 6 Sekunden geöffnet bleiben. Bei geringerem Kältebedarf ist das Ventil während dieser Periode nur kurzfristig geöffnet. Die benötigte Kälteleistung wird vom Regler bestimmt. Besteht kein Kältebedarf, bleibt das Ventil geschlossen.


In einigen Systemen kann AKVA mit Vorteil als Expansions- und Magnetventil verwendet werden. Siehe Anlage.

Abmesungen und Gewichte

			D	_	Anschlüsse		Gewicht ohne Spule
Ventiltyp		А	В		Ein.	Aus.	
		mm	mm	mm	Zoll	Zoll	kg
AKVA 10	1 → 6	60	60	113	3/8	1/2	0.35
AKVA 10	7 → 8	60	60	113	1/2	3/4	0.35

Anlage

Empfehlungen

Bitte beachten, dass in Betrieb das AKVA-Ventil immer entweder völlig geöffnet oder ganz geschlossen ist.

Dieses Betriebsverhalten ist bei der Auslegung der Anlage immer mit in Betracht zu ziehen (Rohrbemessung, Flüssigkeitsdurchflussgeschwin digkeit, Unterkühlung usw.).

Die folgenden Danfoss-Empfehlungen/ Richtlinien sind zu beachten.

■ In 1:1-Anlagen (1 Verdampfer, 1 Verflüssiger und 1 Verdichter) mit Kühlern mit einer geringen Kältemittelfüllung oder vor einem Plattenwärmetauscher installiert ist zu beachten, dass jedes Mal wenn das AKVA-Ventil völlig offen oder ganz geschlossen ist, dies wesentlichen Einfluss auf das gesamte System hat (zum Beispiel Druckschwingungen auf der Saugdruckseite).

Bitte darauf achten, dass die Auslegung eines solchen Systems nicht nur von einer Komponente abhängt (z.B. dem AKVA). Andere Faktoren sind in Verbindung mit dem Gesamtdesign der Kälteanlage ebenfalls von großer Bedeutung, darunter:

- Flüssigkeitsverteilung im Verdampfer und dessen Design
- Die totale Verdampferrohr-Lauflänge ist von eine passenden Länge zu sein, damit sich die Überhitzungsregelung innerhalb der gewünschten Zeitperiode (normal 6 oder 3 Sek.) vornehmen lässt.
- Platzierung der Temperaturfühler, um sicherzustellen, dass dem elektronischen System auf kurzem Wege ein dauernd empfangbares Signal zur Verfügung steht.

- Sind druckabhängige Ventile wie PM mit Pilot CVP usw. zwischen Verdampfer und Verdichter installiert, kann dies Einfluss auf die Lebensdauer des PM-Ventils haben, da der Kolben im PM-Ventil mit dem AKVA zusammenarbeitet. Kältemitteltyp und Verdampfer haben großen Einfluss auf die Größe der Pulsationen nach dem Verdampfer und vor dem PM-Ventil.
- AKVA ist ein direkt druckunabhängiges Ventil, im Gegensatz zu TQ, PHTQ und TEAQ, die alle druckabhängig sind. Werden nicht von Danfoss hergestellte elektronische Regler eingesetzt, ist unbedingt auf eine intelligente und schnelle Regelung zu achten, da sich die schnellen Druckänderungen nur mittels eines elektronischen Regelsystems auffangen und kompensieren lassen.
- Flüssigkeitsleitungen sind unter Berücksichtigung der AKVA-Leistung und nicht der Verdampferleistung zu bemessen.
- Um Dampfbildung zu vermeiden ist ausreichende Unterkühlung zu gewährleisten oder die Flüssigkeitsleitung so zu bemessen, dass bei offenem AKVA keine großen Druckabfälle auftreten. Wird keine ausreichende Unterkühlung erzielt (normal 4K), wird die Lebensdauer des Ventils beeinträchtigt.
- Bei extrem hohen Sicherheitsanforderungen (z.B. bei der Niveauregelung in einem Pumpenseparator) lässt sich zur Vermeidung von Leckage ein zusätzliches Ventil vor dem AKVA installieren.
 Dazu ist ein Ventil Typ Danfoss EVRAT einzusetzen.
- Vor AKVA 15 und AKVA 20 ist unbedingt ein 100µm-Filter zu installieren.
- Wenn AKVA auf Kühlern angewandt werden soll, bitte mit Danfoss Kontakt aufnehmen.

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss Mitarbeitern ableiten, es sei denn, dass diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen des Angemessenen und Zumutbaren Änderungen an ihren Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und das Danfoss Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.