

Démarreurs progressifs Cl-tronic™ MCI 3, MCI 15, MCI 25, MCI 30 I-O,

MCI 40-3D et MCI 50-3 I-O

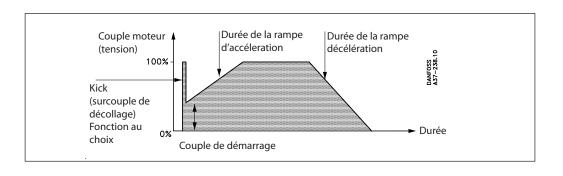
Contenu

Fiche technique

Page Démarreurs progressifs types MCI 3, MCI 15, MCI 25, MCI 30 I-O, MCI 40-3D I-O et MCI 50-3 I-O Commande......4 Diagramme fonctionnel5 Description fonctionnel5 Indication d'état par diodes électroluminescentes......5

Caractéristiques

- Charge moteur max. 50 A
- Durée d'accélération réglable:
 0 à 10 secondes, MCI 3, MCI 15 et MCI 25
 0 à 20 secondes MCI 30 I-O
 0 à 30 secondes, MCI 40-3D I-O, MCI 50-3 I-O
- Couple de démarrage règlable
 0 à 10 secondes MCI 3, MCI 15 et MCI 25
 0 à 20 secondes MCI 30 I-O
 0 à 60 secondes, MCI 40-3D I-O, MCI 50-3 I-O
- Couple de démarrage règlable jusqu'à 85 %
- Fonction kick (surcouple de décollage)
- Tension de commande universelle: 24 à 480 V c.a./c.c.


- Détection automatique de coupure de phase
- Adaption automatique à 50/60 Hz
- Contacts auxiliaires, fonction au choix
- Indication d'état par diodes éléctroluminescentes
- Nombre illimité de démarrages et arrêts par heure
- Protection surtensions intégrée
- Conception modulaire compacte
- Montage sur rails DIN
- Satisfait à la norme EN 60947-4-2
- Homologation CE et CULUS (UL 508)

Déscription

Le démarreur MCI est conçu pour assurer le démarrage et l'arrêt progressifs des moteurs triphasés à courant alternatif. Il permet de réduire les courants d'enclenchement et les sollicitations mécaniques importantes dues au démarrage. Le démarreur progressif à numérique est facile à installer et il est doté de possibilités de réglages conviviales et précises. Ses durées d'accélération et de décéleration sont réglables individuellement, et son couple de démarrage est règlable

avec ou sans kick (sur couple de décollage). Le démarreur proressif est en général utilisé sur les applications qui demandent des démarrages et arrêt progressifs, par exemple les bandes transporteuses ou convoyers, les ventilateurs, les pompes et les compresseurs. Le démarreur progressif est particulièrement bien adapté comme solution de remplacement aux démarreurs en étoile ou de triangle.

Règlages

* Danfoss A/S 05-2009/ RA-MC/mr IC.PD.C50.A4.04-520B3375 3

Commande

Tension service	Courant maxi. du moteur	Puissance maxi. du moteur	i. Dimensions Type		Fonction auxiliaire	Nº de code
208 - 240 V c.a.	3A	0.7 kW / 1 CV	22.5 mm module	MCI 3	-	037N0073
208 - 240 V c.a.	15A	4.0 kW / 5.5 CV	45 mm module	MCI 15	-	037N0037
208 - 240 V c.a.	25A	7.5 kW / 10 CV	90 mm module	MCI 25	-	037N0038
208 - 240 V c.a.	25A (30A)*	11 kW / 15 CV*	90 mm module	MCI 30 I-O	I-O, dérivation	037N0069
208 - 240 V c.a.	35A (50A)*	15 kW / 20 CV*	180 mm module	MCI 50-3 I-O	I-O, dérivation	037N0089
380 - 415 V c.a.	3A	1.5 kW / 2 CV	22.5 mm module	MCI 3	-	037N0074
440 - 480 V c.a.	3A	1.5 kW / 2 CV	22.5 mm Module	MCI 3	-	037N0084
380 - 480 V c.a.	15A	7.5 kW / 10 CV	45 mm module	MCI 15	-	037N0039
380 - 480 V c.a.	25A	11 kW / 15 CV	90 mm module	MCI 25	-	037N0040
380 - 480 V c.a.	25A (30A)*	15 kW / 20 CV*	90 mm module	MCI 30 I-O	I-O, dérivation	037N0070
380 - 480 V c.a.	29A (43A)*	21 kW / 28 CV*	90 mm module	MCI 40-3D I-O	I-O, dérivation	037N0092
380 - 480 V c.a.	35A (50A)*	22 kW / 30 CV*	180 mm module	MCI 50-3 I-O	I-O, dérivation	037N0090
500 - 600 V c.a.	3A	2.2 kW / 3 CV	22.5 mm module	MCI 3	-	037N0075
500 - 600 V c.a.	15A	7.5 kW / 10 CV	45 mm module	MCI 15	-	037N0041
500 - 600 V c.a.	25A	15 kW / 20 CV	90 mm module	MCI 25	-	037N0042
500 - 600 V c.a.	25A (30A)*	18.5 kW / 25 CV*	90 mm module	MCI 30 I-O	I-O, dérivation	037N0071
500 - 600 V c.a.	35A(50A)*	30 kW / 40 CV*	180 mm module	MCI 50-3 I-O	I-O, dérivation	037N0091

^{*} Si utilisé avec un contacteur de bypass

_						
Cara	cte	ristic	zeur	tech	nnıa	ues

Caractéristiques de la pui	ssance MCI 3	MCI 15	MCI 25	MCI 30 I-O	MCI 40-3D I-O	MCI 50-3 I-O	
Intensité de service maxi.	3A	15A	25A	30A (si by-passé durant l'etat stable)	43A (si by-passé durant l'etat stable)	50A (si by-passé durant l'etat stable)	
Taille du moteur sous: 208 - 240 V c.a. 380 - 480 V c.a. 380 - 600 V c.a.	0.1-1.5 kW (0.18-2 CV)	0.1-4.0 kW (0.18-5.5 CV) 0.1-7.5 kW (0.18-10 CV) 0.1-7.5 kW (0.18-10 CV)	(,	0.1-11 kW (0.18-15 CV) 0.1-15 kW (0.18-20 CV) 0.1-18.5 kW (0.18-25 CV)	0.1-21 kW (0.18-28 CV)	0.1-15 kW (0.18-20 CV) 0.1-22 kW (0.18-30 CV) 0.1-30 kW (0.18-40 CV)	
Courant de fuite maxi.	5 mA						
Intensité de service mini.	50 mA						
Classe de conseillés mini.	Classe 10						
Coupe-circuits Type 1 coordination Type 2 coordination I²t (t = 10ms)	25A gL/gG 72 A²s	50 A gL/gG 1800 A²s	80 A gL/gG 6300 A² s	80 A gL/gG 6300 A² s	80 A gL/gG 6300 A² s	125 A gL/gG 25300 A ² s	
Indice de charge:							
Moteur asynchrone AC-53a Moteur asynchrone	_	15A: AC-53a: 8-3:100 - 3000	25A: AC-53a: 6-5 : 100 - 480	25A: AC-53a: 6-5 : 100 - 480	29A:AC-53a:6-5:100-120	35A: AC-53a: 6-6 : 00-120	
avec dérivation AC-53b Compresseurs hermétiques AC-58a	3A:AC-53b:5-5:10	- 15A-AC 593-6 6-100, 2000	- 25A: AC-58a: 6-6 : 100 - 480	30A: AC-53b: 5-5: 30	43A:AC-53b:5-5:30	50A: AC-53b: 6-6 : 30	
AC-30a	_	13A.AC-30a.0-0:100-3000	23A.AC-30a.0-0:100-400	23A.AC-30a.0-0:100-400		_	

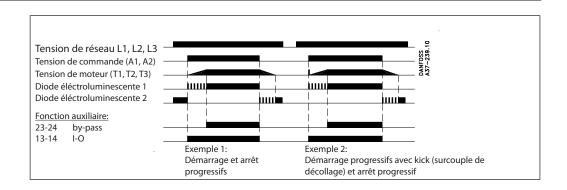
Caractéristique de la commande

earacteristique de la com					
Tension de commande	24 à 480 V c.a./c.c.				
Tension d'enclanchement maxi.	20.4 V c.a./c.c.				
Tens. de déclenchem. mini.	5 V c.a./c.c.				
Courant de commande / sans fonction	I mA				
Courant de commande / puissance maximale	15 mA / 2 VA				
Temps de réponse maxi.	70 ms				
Durée de la rampe d'acc.	Réglable de 0 à 10 secondes 0 à 20 secondes 0 à 30 secondes			condes	
Durée de la rampe de déc.	Réglable de 0 à 10 secondes 0 à 60 secondes 0 à 60 secondes				
Couple de démarrage	Couple nominal réglable de 0 à 85 % avec fonction kick (surcouple de déc	collage) possible			
Fonct. auxil. SCR, fonct. aux choix Tension/ intensité maxi. (AC-14, AC-15)	24 à 480 V c.a. / 0.5 A			24 à 480 V c.a./1.0 A	
Val. maxi. du fusib l² t (t = 10ms)	10 A gL/gG, I2t max. 72 A²s				
Immunité CEM et emission	Selon EN 60947-4-2				

Isolement

isolement	ordiner.						
Tension nominale d'isolement, U _i	660 V AC						
Tension nominale de tenue aux chocs, $U_{imp}V$	4 k						
Catégorie de surtension							

Caractéristiques techniques (suite)


Caractéristiques techniques	MCI 3	MCI 15	MCI 25	MCI 30 I-O	MCI 40-3D I-O	MCI 50-3 I-O
Puissance*), en régime continu, maxi.:	4 W		2 W/A		3 W/A	
Puissance*), en régime intermittent maxi.:	4 W	2 W/A x duty cycle 3 W/A x duty			luty cycle	
Température ambiante	−5°C à 40°C					
Procédé de refroidissement	Convection naturelle					
Installation	Vertical +/- 30°					
Température ambiante maxi. à charge réduite	60°C, se reporter	au tableau pour	a réduction page	7		
Température ambiante maxi., stockage	−20°C à 80°C					
Degré de protection / degré de pollution	IP 20 / 3 IP 10 / 3					

Matériaux

Corps	À extinction automatique PPO UL94V1
Plaque de refroidissement	Aluminum, Elox noir
Fixation de montage	Acier oxidé anodisé

^{*)} si utilisé sans un contacteur by-pass

Diagramme fonctionnel

Description fonctionnel

Rampe d'accélération

Au cours de la rampe d'accélération, le démarreur augmente progressivement la tension délivrée aux bornes du moteur, jusqu'à ce que la tension du réseau soit atteinte. La vitesse de rotation du moteur dépend de la charge réelle appliquée sur l'axe du moteur. Un moteur faiblement ou pas du tout chargé atteint sa vitesse de rotation maximale avant que la tension n'atteigne sa valeur maximale. La durée de rampe réelle, qui est calculée de façon numérique, n'est pas affectée par d'autres réglages, ni par la fréquence du réseau, ni par les variations de charge.

Couple de démarrage

Le couple de démarrage est fonction de la tension du moteur, ce qui signifie que le démarreur progressif ne peut pas être utilisé pour les applications dans lesquelles un couple de démarrage très important est nécessaire. Dans ce cas, il est possible d'activer la fonction kick (surcouple de décollage) qui met le moteur sous tension maximale pendant 200 ms.

Arrêt progressif

Au cours de la rampe de décélération, le démarreur diminue progressivement la tension délivrée aux bornes du moteur, ce qui permet d'obtenir une réduction du courant et du couple, et entraine une réduction de la vitesse de rotation du moteur. L'avantage de la fonction d'arrêt progressif est qu'elle permet d'éviter les coups de bélier et les phénomènes de cavitation dans les pompes, ainsi que le renversement des marchandises sur les bandes transporteuses.

Fonction auxiliaire, fonction au choix

Les contacts auxiliaires SCR intégrés peuvent être utilisés pour connecter une charge.

Contact I-0 (13 - 14):

Le contact est fermé tant que le circuit de commande est sous tension. Se reporter au schéma de fonctionnement.

Contact de by-pass (23 - 24):

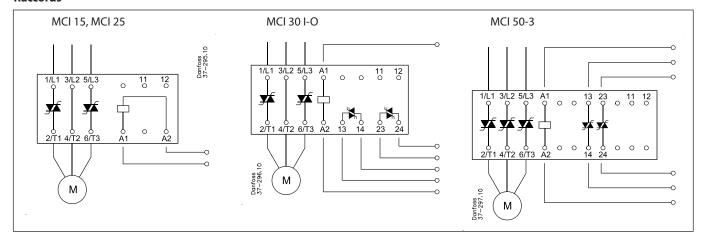
Utilisé pour commander un contacteur externe de dérivation de l'intensité de service.

Le contact se ferme lorsque la tension de réseau est atteinte. Se reporter au schéma de fonctionnement.

Indication d'état par diodes électroluminescentes

Indication d'état par diodes électroluminescentes:

Diode électroluminescente 1


Diode électroluminescente 2

Prêt Rampe Exploitation Rampe de Panne de d'accélération nominale décélération réseau ou de charge

* Danfoss A/S 05-2009/ RA-MC/mr IC.PD.C50.A4.04-520B3375

Raccords

Protection contre les surcharges et les courts-circuits

La protection contre les surcharges et les courtscircuits d'un moteur est simple à obtenir: installer un disjoncteur du côté de l'alimentation de démarreur progressif. Choisir le disjoncteur dans le tableau en fonction du courant du moteur à

pleine charge.

Veiller aux capacités de rupture maximales prévisibles. Pour obtenir des informations compémentaires, veuillez vous reporter à la fiche technique du disjoncteur.

380-415 V c.a.								
Courant plaine charge du moteur en A	Démareurs progessifs Type	Démarreurs progressifs valeur l²t	Coupe-circuit Type	Coupe-circuit Nº de code	Capacités de coupure maxi. prévisibles Icc coordination 2			
0.40 - 0.63	MCI 15	1800 A ² s	CTI 25M	047B3143	100 kA			
0.63 - 1.0	MCI 15	1800 A ² s	CTI 25M	047B3144	100 kA			
1.0 - 1.6	MCI 15	1800 A ² s	CTI 25M	047B3145	100 kA			
1.6 - 2.5	MCI 15	1800 A ² s	CTI 25MB	047B3153	100 kA			
2.5 - 4.0	MCI 15	1800 A ² s	CTI 25MB	047B3154	100 kA			
4 - 6.3	MCI 15	1800 A ² s	CTI 25MB	047B3155	4 kA			
6.3 - 10	MCI 15	1800 A ² s	CTI 25MB	047B3156	1.5 kA			
10 - 16	MCI 15	1800 A ² s	CTI 25MB	047B3157	2.5 kA*)			
14.5 - 20	MCI 25/30 I-O	6300 A ² s	CTI 25MB	047B3158	1.8 kA			
18 - 25	MCI 25/30 I-O	6300 A ² s	CTI 25MB	047B3159	1.5 kA			
18 - 25	MCI 25/30 I-O	6300 A ² s	CTI 45MB	047B3163	1.3 kA			
23 - 32	MCI 50 I-O	25300A ² s	CTI 45MB	047B3164	6 kA			
32 - 45	MCI 50 I-O	25300A ² s	CTI 45MB	047B3165	4 kA			
40 - 63	MCI 50 I-O	25300A ² s	CTI 100	047B3014	5 kA			

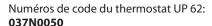
^{*)} La coordination de type 2 peut seulment être obtenue avec le MCI 25

Régime à hautes températures

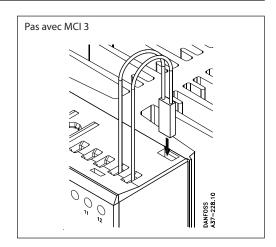
Si le micro-démarreur est utilisé sans le contacteur by-pass externe:

Température	Courant continu						
ambiante	MCI 3	MCI 15	MCI 25	MCI 30 I-O	MCI 40-3D I-O	MCI 50-3 I-O	
40°C	3 A	15 A	25 A	25 A	29 A	35 A	
50°C	2.5 A*	12. 5 A	20 A	20 A	23 A	30 A	
60°C	2.0 A*	10 A	17 A	17 A	20 A	25 A	

^{*} Prévoir un espace de 10 mm entre chaque appareil


Température	Régime intermittent (régime continu de 15 min. maxi.)					
ambiante	MCI 15	MCI 25	MCI 30 I-O	MCI 40-3D I-O	MCI 50-3 I-O	
40°C	15 A (100% régime intermitt)	25 A (100% régime intermitt)	25 A (100%régime intermitt)	43 A (65% régime intermitt)	50 A (65% régime intermitt)	
50°C	15 A (80% régime intermitt)	25 A (80% régime intermitt)	25 A (80% régime intermitt)	43 A (50%régime intermitt)	50 A (55% régime intermitt)	
60°C	15 A (65% régime intermitt)	25 A (65% régime intermitt)	25 A (65% régime intermitt)	43 A (40% régime intermitt)	50 A (45% régime intermitt)	

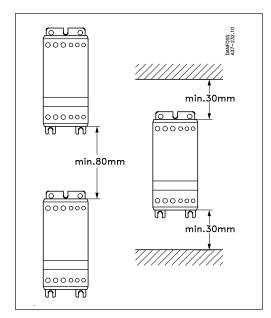
Si le micro-démarreur est utilisé avec un contacteur by-pass externe:


Température					
ambiante	MCI 15	MCI 25	MCI 30 I-O	MCI 40-3D I-O	MCI 50-3 I-O
40°C	15	25	30	43	50
50°C	15	25	30	43	50
60°C	15	25	30	43	50

Protection contre les surcharges thermiques

Si nécessaire, il est possible de protéger le démarreur progressif contre les surcharges thermiques en insérant un thermostat dans la colonne située à droite en partie supérieur de démarreur progressif.

Le thermostat est monté en série avec le circuit de commande d'un contacteur général; lorsque la température des éléments de refroidissement dépasse 90°C, le contacteur est interrompu. Avant redémarrage, réinitialiser le circuit. Se reporter au raccordement proposé en exemple, page 8.


Instructions de montage

Le démarreur progressif est conçu pour un montage vertical. Si le démarreur est monté en position horizontale, réduire la charge 50%.

Il n'est pas nécessaire de prévoir d'espace de chaque côté du démarreur.

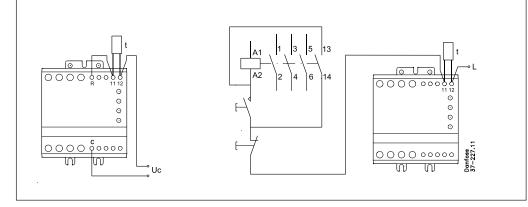
La distance séparant 2 démarreurs doit être au minimum de 80 mm (3.15").

La distance séparant les parties supérieur et inférieure du démarreur et les murs et parois doit être au minimum de 30 mm (1.2").

* Danfoss A/S 05-2009/ RA-MC/mr IC.PD.C50.A4.04-520B3375

Exemples d'applications

Protection thermique

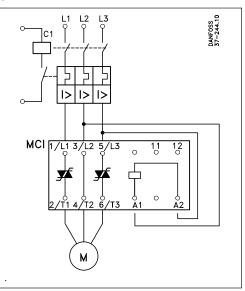

Exempel 1

Le thermostat peut être monté en série avec le circuit de commande du démarreur progressif. Lorsque la température du radiateur dépasse 90°C, le démarreur progressif est arreté.

ATTENTION: Lorsque la température tombe à 30°C environ, le démarreur progressif se réenclenche automatiquement. Dans certains applications, ceci n'est pas sans risques.

Exemple 2

Le thermostat est monté en série avec le circuit de commande d'un contacteur général; lorsque la température des éléments de refroidissement dépasse 90°C, le contacteur est interrompu. Avant redémarrage, réinitialiser le circuit.



Démarrage progressif commandé par la tension principale

Lorsque le contacteur C1 est fermé, le démarreur progressif lance le moteur conformément aux valeurs préréglées de la durée de la rampe d'accélération et du couple de démarrage.

Lorsque le contacteur C1 est ouvert, le moteur est instantanément mis hors tension.

Dans cette application, le contacteur n'est soumis à aucune charge au démarrage. Le contacteur supporte et coupe le courant nominal du moteur.

Exemples d'application suite

Démarrage et arrêt progressifs par les signaux de commande

Lorsque les bornes A1-A2 sont mises sous tension de commande, le moteur démarre selon les valeurs prérèglées de la durée de la rampe d'accélération et du couple de démarrage.

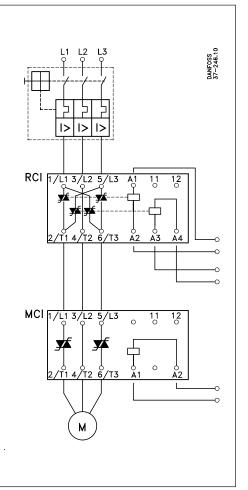
Lorsque la tension de commande est coupée, le moteur s'arrête progressivement conformément aux valeurs prérèglées de la durée de la rampe de décélération.

Pour obtenir une mise hors tension instantanée du moteur, règler la durée de la rampe de décélération à 0.

Combinaison de l'inversion et des démarrage et arrêt progressifs

Démarrage et arrêt progressifs

L'inversion avec démarrage et arrêt progressifs peut facilement être obtenu en raccordant un contacteur électronique d'inversion au démarreur progressifs.


Le contacteur d'inversion de type RCI détermine le sens de rotation, tandis que le démarreur progressif gère les démarrage et arrêts progressifs du moteur.

Démarrage proressif uniquement

Lorsque le démarrage progressif est seul nécessaire, le circuit de commande peut être simplifié en raccordant les bornes du démarreur progressif comme indiqué dans Démarrage progressif commandé par la tension principale (voir exemple en page 8).

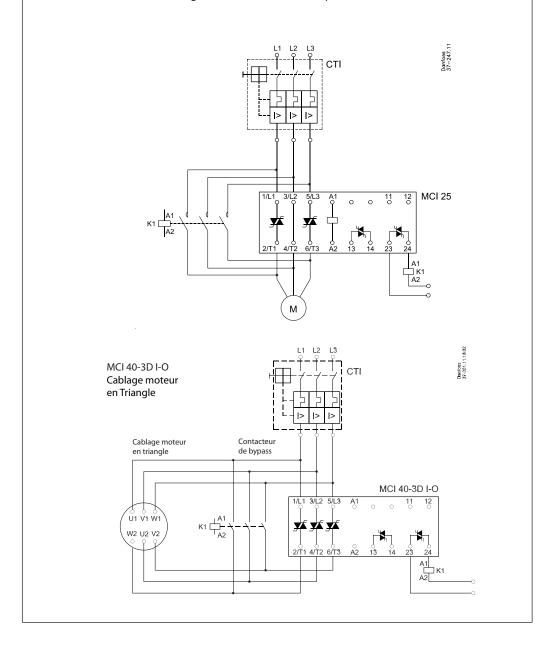
Un arrêt de 0.5 seconde environ entre chaque inversion est nécessaire afin de réduire l'incidence de la tension du moteur induite.

L'inversion peut également être configurée avec des contacteurs électromécaniques et permet, grâce à la réduction du courant de démarrage due au démarreur progressif, d'augmenter la durée de vie électronique des contacteurs.

* Danfoss A/S 05-2009/ RA-MC/mr IC.PD.C50.A4.04-520B3375

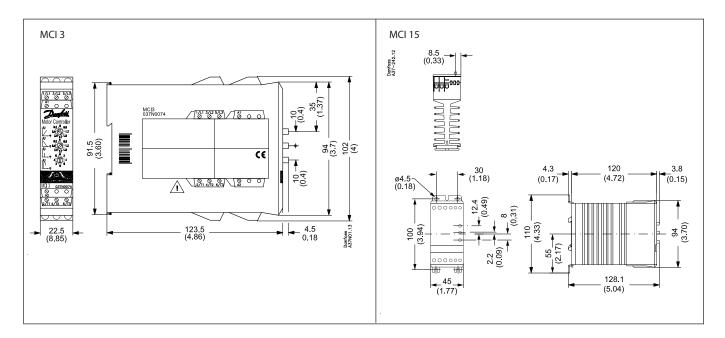
Exemples d'applications suite

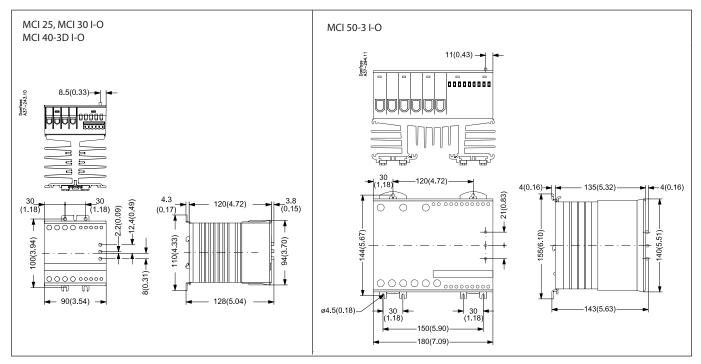
MCI avec contact de déviration


Si le micro-démarreur MCI en fonctionnement est bypassé durant l'état stable il n'ya pas de dissipation de chaleur.

Un MCI bypassé peut être chargé selon le tableau page 7.

" fonctionnement à haute température" 'utilisation d'un contact auxiliaire intégré (contact de


dérivation) permet de solutionner facilement l'application. Voir le shéma ci-dessous et " le diagramme fonctionnel " page 5.


Comme le contacteur s'enclanche toujours à vide, il peut être choisi sur la base du courant thermique (AC-1)

Dimensions mm (pouce)

* Danfoss A/S 05-2009/ RA-MC/mr IC.PD.C50.A4.04-520B3375 11

Fiche technique

Danfoss n'assume aucune responsabilité quant aux erreurs qui se seraient glissées dans les catalogues, brochures ou autres documentations écrites. Dans un souci constant d'amélioration, Danfoss se réserve le droit d'apporter sans préavis toutes modifications à ses produits, y compris ceux se trouvant déjà en commande, sous réserve, toutefois, que ces modifications n'affectent pas les caractéristiques déjà arrêtées en accord avec le client. Toutes les marques de fabrique de cette documentation sont la propriété des sociétés correspondantes.

Danfoss et le logotype Danfoss sont des marques de fabrique de Danfoss A/S. Tous droits réservés.